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Abstract 
DNA Methylation has the potential to serve as an important epigenetic biomarker in next generation cancer 
treatments. Methylation is known to regulate gene transcription in humans, and errors in this process have 
been linked to the development of certain tumors. Thus, researchers are currently conducting studies to 
identify new methylation signals as prognostic biomarkers, but this research is expensive due to the substantial 
cost of high-resolution analysis required to pinpoint these biomarkers. With the advent of MethylCap-Seq, a 
cheap, capture-based assay that maps methylation at near-nucleotide-level resolution, the cost of methylation 
analysis has dropped. However, MethylCap-Seq requires that sample tissue has high quality DNA in order to 
conduct accurate methylation analysis. Further, the majority of the current population of cancer patient 
samples is stored as Formalin Fixed Paraffin Embedded (FFPE), a storage option that is prone to DNA 
degradation over time. We attempted to correct for the effects of FFPE sample DNA degradation by developing 
a computational method to apply after sequencing. To test the effectiveness of our methods, we compared our 
techniques on a subset of 45 FFPE samples against a control group of 5 samples stored at -55 degrees 
Celsius (Fresh Frozen) First, we discovered that the alignment rates of FFPE samples negatively correlated 
with their CpG enrichments (a proxy for the quality of methylation results to be expected from assaying a given 
sample.) Since CpG enrichment relies on the quality of CpG sites, and since alignment rates are known to 
negatively correlate with mutation rates, we hypothesized that FFPE samples experienced the well-known and 
hyperactive C->T mutation at a rate greater than that of Fresh Frozen samples. We identified several 
significantly different mutation rates in FFPE reads when compared to Fresh Frozen reads, the most notable 
and pronounced of which was CpG -> TpG. We used the Bismark aligner (to correct for general C based 
mutations) as well as a self-modified “hybrid” variation of the Bismark aligner (tuned to correct specifically for 
CpG -> TpG mutations) to align reads from FFPE samples that could not be aligned or uniquely mapped by a 
normal aligner (Bowtie). Both aligners rescued some read alignments but revealed that when corrected for, 
neither the CpG -> TpG effect nor other C based mutation effects were significant enough to increase 
alignment rates, and thus CpG enrichments. For completeness, we further analyzed reads that could not be 
aligned by Bowtie, Bismark or the hybrid Bismark aligner by aligning them with BLAST. This analysis revealed 
that about 10% of these reads could be aligned to the human genome by BLAST and that their collective CpG 
enrichment was on average higher than those already aligned by our methods. These reads could serve as a 
point of interest for further investigation in future studies on this issue. 
 
Introduction 
DNA methylation -- the attachment of a methyl group to a cytosine nucleotide in a CpG context -- plays an 
important role in suppressing gene transcription. Malfunctions in this process have been connected with the 
onset of cancer [1] as well as many other human diseases. The characterization of the methylation of the 
human genome and of specific genes has given researchers valuable insight to many types of cancers, 
ranging from identification of inactivated tumor-suppressing genes in gastric cancers [2] to early detection of 
lung cancer [3]. Research like this is accomplished by assaying methylation of large sample cohorts in 
retrospective or long-term contexts. The most cost effective strategy for interrogating the methylation of large 
numbers of samples is with MethylCap Sequencing (MethylCap-Seq). MethylCap-Seq takes advantage of the 
low cost of capture-based methods of methylation analysis but leverages a statistical method to achieve near-
nucleotide level resolution [4]. 

 
A common and cheap tissue storage option for researchers is to archive tissue samples as Formalin Fixed and 
Paraffin Embedded (FFPE). This storage method is low cost because the chemical solution allows for samples 
to be preserved even at room temperature. Since this is such a common storage option for researchers, there 
exists a wealth of untapped information amidst the myriad FFPE samples, and it continues to grow [5]. 
However, samples stored as FFPE are known to be prone to DNA degradation [5], presenting an issue for 
studies involving DNA sequencing. The most notable and prevalent of these degradations is cytosine 
deamination resulting in a uracil nucleotide [6]. After sequencing, this will manifest itself as a C->T mutation or 



GàA mutation on the reverse strand. This particular variant presents a problem for any sequencing 
experiment but is particularly disruptive in MethylCap-Seq assays since methylation occurs at CpG sites and 
MethylCap-Seq enriches for these sites.  

 
In response to the growing demand to sequence these poor quality DNA samples, there now exist a few 
commercially available FFPE DNA damage repair solutions [7, 8]. These have been tested and shown to be a 
viable option for FFPE samples with moderate to minimal DNA degradation in studies requiring relatively 
simple techniques to detect mutations [8, 9]. However, even manufacturers acknowledge that the extreme 
variability in the abundance of available FFPE samples makes establishing an accepted protocol for FFPE 
sample pre-treatment and repair difficult [8]. Further, studies evaluating the efficacy of DNA repair kits have 
concluded that additional techniques will be required when using FFPE samples to carry out more complex 
experiments that leverage Next Generation Sequencing (NGS) [10]. Recognizing this, MethylCap-Seq 
experiments (a complex methylation assay relying on NGS) have yielded differences in many quality measures 
when carried out with FFPE samples compared to with samples that have intact DNA. Herein we identify and 
characterize systematic mutations in FFPE sample DNA that can be corrected for computationally using the 
Bismark aligner [11] as well as a novel variation of the aligner. While correcting for discovered mutation effects 
was not sufficient to make FFPE samples usable with Fresh Frozen samples in next generation sequencing 
experiments, we identify an area of further investigation that could be explored to accomplish this. 

 
Methods 
The data used in this study was drawn from 45 FFPE samples and 5 Fresh Frozen samples. The sample DNA 
was previously sequenced and the resulting data have been shared with our lab by collaborators. 
 
Mutation Distributions in Fresh Frozen and FFPE 
For each possible mutation type of a given base (A->G, A->T, A->C, C->T, etc.), we calculated the average 
rate per read of those mutations in the Fresh Frozen samples and the FFPE samples. This was conducted as 
follows. First, we aligned samples’ reads to the hg19 version of the human genome using Bowtie, a well-known 
and commonly used DNA alignment tool [12]. We restricted the aligner to allow zero mismatches between any 
given read and the reference genome. Bowtie then returned two separate sets of reads, one set of aligned 
reads and the other set of unaligned or multimapped reads. The set of unaligned or multimapped reads 
constituted a set containing exclusively reads with mismatches to analyze. Next, that set was run through a 
pipeline that leverages Samtools’ variant calling facility [13], based on Broad Institute’s GATK Best Practices 
for Variant Calling [14]. The pipeline returned a list of every mutation from the input reads, providing the 
specific nucleotides of the mutation and of the reference. Since we aimed to study mutations that occurred 
during storage rather than known Single Nucleotide Variants (SNVs), we ignored any mutations that matched 
known SNVs in COSMIC [15], dbSNP [16], or 1000 Genomes [17] databases of known somatic mutations. We 
also ignored any apparent mutations resulting from a sequencing quality score (confidence with which the 
sequencer called the base) below 30 on the Phred scale [18]. Using this list as input, we wrote a script to count 
all mutations. We then used the output to generate a plot of all mutation counts for the given sample. We then 
summed these plots together by storage type and normalized them by read-base occurrence. The distribution 
(seen in Figure 1) of mutation types per read-base in Fresh Frozen stored samples was subtracted from the 
matching distribution in FFPE stored samples. This analysis showed that no significant difference existed for 
any mutation type. In other words, by this analysis, no mutation type was obviously and systematically 
happening more frequently in the FFPE than the Fresh Frozen. 



 
Figure 1: Difference in per-base mutation rates for FFPE (above the negative) vs. Fresh Frozen (below the 

negative). This analytical method revealed no obvious mutation biases. 
 
Incremental Mutation Analysis 
Since we hypothesized that there was a mechanism causing C->T mutation to occur more frequently in FFPE 
than Fresh Frozen, we guessed that this preferential distribution may manifest itself more as reads with higher 
numbers of mismatches are analyzed, seeing fewer effects from random error (such as sequencing error). So 
we repeated our analysis from “Mutation distributions in Fresh Frozen and FFPE” with one adjustment. We 
incrementally generated mutation distributions for reads with a given number of mismatches. Specifically, we 
plotted a mutation distribution for reads with one mismatch, then reads with two mismatches, and so on. Since 
Bowtie only allows a maximum of 3 mismatches per read, we adapted the STAR [19] RNA aligner to align our 
DNA reads for the incremental analysis. STAR theoretically allows an unlimited number of mismatches per 
read. To test whether STAR would give reliable DNA alignments in our experiment, we aligned a subset of 7 
FFPE samples with Bowtie and with STAR four times; once for each of the mismatch levels from 0 to 3. Table 
1 shows that the alignments produced by the two tools are similar to within an average of 1.5%. We performed 
our incremental mutation analysis using STAR to produce alignments up to and including reads with 6 
mismatches. Performing the same FFPE/Fresh Frozen distribution subtraction at each mismatch level again 
yielded no obvious differences in mutation rates. 
 
 
 
 
 
 



STAR vs. Bowtie Alignment Rates 
 

sample+MM-level	
bowtie-alignment-
rate	(%)	

STAR-alignment-
rate	(%)	

Difference	
(%)	

B30-00	 68.43	 67.19	 1.24	
B30-01	 35.00	 32.93	 2.07	
B30-02	 13.42	 12.03	 1.39	
B30-03	 8.60	 7.49	 1.11	
B34-00	 56.86	 55.98	 0.88	
B34-01	 21.78	 20.82	 0.96	
B34-02	 8.80	 8.07	 0.73	
B34-03	 6.50	 5.77	 0.73	
B37-00	 60.73	 59.82	 0.91	
B37-01	 26.94	 25.73	 1.21	
B37-02	 11.49	 10.49	 1.00	
B37-03	 8.29	 7.31	 0.98	
B40-00	 67.55	 66.08	 1.47	
B40-01	 37.11	 34.60	 2.51	
B40-02	 16.68	 14.66	 2.02	
B40-03	 11.87	 9.97	 1.90	
B16-00	 65.12	 63.51	 1.61	
B16-01	 35.54	 33.11	 2.43	
B16-02	 17.90	 15.74	 2.16	
B16-03	 13.41	 11.23	 2.18	
B3-00	 63.82	 62.68	 1.14	
B3-01	 33.70	 31.74	 1.96	
B3-02	 16.06	 14.33	 1.73	
B3-03	 11.24	 9.83	 1.41	
B52-00	 62.78	 61.59	 1.19	
B52-01	 33.00	 31.07	 1.93	
B52-02	 16.59	 14.79	 1.80	
B52-03	 12.21	 10.36	 1.85	

 

Table 1: Evaluation of STAR as an FFPE DNA aligner using Bowtie as a baseline. The average difference 
between alignment rates was 1.5%, indicating that STAR and Bowtie perform comparably. 

 
 
Context Dependent Mutation Distributions 
Studies have shown that C nucleotides in a CpG context are overall more likely to degrade into a TpG 
dinucleotide than a C in any other context [20]. We hypothesized that the chemical nature of FFPE storage 
may exacerbate this effect. Thus we recalculated our analysis from “Mutation distributions in Fresh Frozen and 
FFPE”, this time accounting for three possible C contexts: CpG, CHG, and CHH; as well as the equivalent 
contexts on the reverse strand: CpG, CDG, and DDG. Subtracting the Fresh Frozen mutation distribution from 
the FFPE distribution yielded several significant mutation differences between the two groups, the most drastic 
of which being the CpG -> TpG mutation and the equivalent reverse strand mutation. The subtracted 
distribution can be seen in Figure 2 and the p-values associated with the differences for each mutation type 
are shown Table 2. P-values were calculated using a Welch’s T-Test [21]. 



 
Figure 2: Difference in per-context mutation rates for FFPE (above the negative) vs. Fresh Frozen (below the 
negative). Three contexts were considered for C bases and three contexts were considered for G bases. This 
analysis revealed a notable difference in CpG -> TpG (and equivalent reverse strand) mutation rates in FFPE 
compared to Fresh Frozen samples. This effect and others are statistically validated at the a = 0.05 level in 

Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Statistical Significance of Context-Based Mutations for FFPE vs. Fresh Frozen Reads 
 

Mutation	
Type	 P-value	

Fresh	Frozen	
variance	

FFPE	
variance	

Difference-
of-Means	

A-->C	 0.4765	 4.7139E-07	 6.1239E-06	 -0.0005	
A-->G	 0.0954	 6.1837E-07	 4.8303E-05	 0.0028	
A-->T	 0.0965	 2.7177E-07	 7.8293E-06	 0.0012	

	 	 	 	 	CpG-->ApG	 0.0535	 2.0560E-07	 4.4745E-05	 0.0031	
CpG-->GpG	 0.0844	 2.2342E-07	 1.9629E-05	 0.0018	
CpG-->TpG	 0.0066	 1.6053E-06	 5.9272E-04	 0.0167	

	 	 	 	 	CHG-->AHG	 0.0472	 1.0890E-07	 2.5613E-05	 0.0024	
CHG-->GHG	 0.0091	 3.2450E-08	 8.3567E-06	 0.0019	
CHG-->THG	 0.0048	 6.9169E-08	 2.1198E-05	 0.0033	

	 	 	 	 	CHH-->AHH	 0.0927	 1.4407E-07	 2.5285E-05	 0.0020	
CHH-->GHH	 0.3075	 6.0076E-07	 1.1408E-05	 0.0009	
CHH-->THH	 0.0235	 4.7355E-07	 2.9305E-05	 0.0030	

	 	 	 	 	CpG-->CpA	 0.0084	 2.1121E-06	 5.9845E-04	 0.0162	
CpG-->CpC	 0.0573	 4.0236E-07	 2.8096E-05	 0.0025	
CpG-->CpT	 0.0269	 2.1558E-07	 4.8024E-05	 0.0037	

	 	 	 	 	CDG-->CDA	 0.0058	 1.5000E-07	 2.5046E-05	 0.0035	
CDG-->CDC	 0.0184	 5.9000E-08	 8.6800E-06	 0.0017	
CDG-->CDT	 0.0440	 1.1426E-07	 2.7104E-05	 0.0025	

	 	 	 	 	DDG-->DDA	 0.0361	 4.2078E-07	 2.4164E-05	 0.0025	
DDG-->DDC	 0.1143	 2.5044E-07	 9.2269E-06	 0.0012	
DDG-->DDT	 0.0666	 1.1001E-07	 2.3585E-05	 0.0021	

	 	 	 	 	T-->A	 0.0853	 3.0652E-07	 9.8280E-06	 0.0013	
T-->C	 0.1150	 9.2133E-07	 5.2286E-05	 0.0027	
T-->G	 0.5771	 4.3925E-07	 5.8082E-06	 -0.0003	

 

Table 2: The table shows a Welch’s t-test of the differences of the average mutation rate of each given context 
between FFPE and Fresh Frozen samples. Welch’s t-tests are suited for testing whether two populations have 

equal means in the case where the samples have unequal sizes and variances, as is the case with our data 
(NFFPE = 45, NFresh Frozen= 5.) Note that while many mutation effects were statistically validated (highlighted in 
yellow), the CpG -> TpG effect (and equivalent reverse strand effect) had the largest difference of means. 

 
 
 
 
 
 
 

 



Correcting for Systematic Mutations in FFPE  
To correct for higher rates of CpG -> TpG mutations (and similar context based mutations) in the FFPE 
samples, we used the Bismark Bisulfite DNA aligner [11]. This aligner leverages a computational method that 
corrects for systematic C->T mutations in order to still provide accurate alignments. We created a “hybrid” 
Bismark aligner by altering its underlying algorithm to only correct for CpG -> TpG mutations. This way, we 
could align reads that could not be aligned by Bowtie or STAR due to CpG -> TpG mismatches and also align 
reads unmapped by Bismark due to its known struggle with sequence ambiguity. To ensure that the alignments 
given by our hybrid aligner were valid, we tested a random sample of 30 hybrid-generated alignments. We 
carried out the test by manually re-aligning the hybrid-aligned reads with BLAT [22] and found that BLAT also 
found 26/30 hybrid-produced alignments. Four of the reads simply could not be mapped anywhere on the 
genome by BLAT. We deemed that this was effective enough to continue testing the tool. 
 
To correct for the significant mutation effects found in the FFPE data, we used the following method on 9 FFPE 
samples. First, we aligned reads with default Bowtie and set aside the aligned reads. Next, we aligned the 
resulting multimapped and unaligned reads with the normal Bismark aligner to correct for general C mutation 
differences. We pooled the aligned reads from this step with the Bowtie-aligned reads and calculated the 
resulting boost to alignment rates and CpG enrichment. Finally, we aligned the remaining multimapped and 
unaligned reads with the hybrid Bismark aligner in order to correct for solely the CpG->TpG (and equivalent 
reverse strand) mutation effect. We added the aligned reads with the Bowtie and Bismark aligned reads and 
again calculated the gains to total alignment rate and CpG enrichment. The calculations at each step can be 
found in Table 3. Unfortunately, the gains made from these computational methods were not as large as we 
had hoped. This suggests that, though certain mutations occur more frequently in FFPE samples, the sites of 
the mutations occur relatively infrequently compared to others. This may indicate problems occurring before 
library generation which our corrections cannot address. 
 

Gains to Alignment Rate and CpG Enrichment via Bismark Methods 
 

Sample	
Bismark-AlignRate-
boost	(%)	

Hybrid-AlignRate-
boost	(%)	

Bisboost-CpG	
Change	(%)	

HybridBoost-CpG	
Change	(%)	

B17	 2.01	 0.97	 0.48	 0.78	
B19	 0.81	 0.32	 1.02	 1.15	
B21	 2.21	 1.06	 1.30	 1.26	
B25	 2.46	 1.28	 0.11	 0.72	
B26	 2.90	 1.55	 0.75	 1.27	
B45	 2.21	 1.02	 2.38	 2.31	
B29	 1.48	 0.71	 0.36	 0.63	
B2	 2.45	 1.60	 0.14	 0.41	
B3	 2.25	 1.48	 1.03	 1.23	

 

Table 3: Final boosting stats from running Bismark, then the hybrid Bismark on our data. Though these 
methods improve alignment and CpG enrichment rates, the gains are not as large as we had hoped. This 
indicates that, though some mutations occur more often in FFPE samples, the sites of these mutations are 

relatively infrequent compared to others. 
 
Remaining Unmapped Reads 
To further investigate the characteristics of the FFPE reads that could not be aligned by Bowtie, Bismark or by 
the hybrid Bismark, we aligned a random subset of 100,000 of these remaining unaligned reads from 5 
samples with BLAST [23]. Surprisingly, BLAST found a unique best alignment to the human genome for about 
10% of reads in each subset (see Table 4.) Further analysis showed that the CpG enrichment of these BLAST-
aligned reads was higher than the CpG enrichment of the population of Bowtie aligned reads for each sample. 
We calculated theoretical gains to total CpG enrichment that could be attained by aligning all unaligned reads 
(rather than just a 100K down-sample) from the 5 samples and combining them with Bowtie aligned reads, 
assuming a 10% alignment rate (see Table 5.) However, aligning such a large number of reads with BLAST 
would be highly computationally intensive and thus not necessarily desirable. Further analysis as to why 
BLAST aligned these reads while Bowtie, Bismark and the hybrid Bismark could not was beyond the scope of 
this study. 



Aligning Unmapped Reads with BLAST 
 

Sample	
Reads	in	Down-

sample	
BLAST-mapped-

reads	 Alignment	rate	

B26	 100000	 11143	 11.14%	

B45	 100000	 11699	 11.70%	

B19	 100000	 3305	 3.31%	

B29	 100000	 10582	 10.58%	

B3	 100000	 22156	 22.16%	
 

Table 4: BLAST Alignment rate of a 100K down-sample for 5 FFPE samples. Alignment rates were 
unexpectedly high at an average of ~10% 

 
 

CpG enrichment of Bowtie vs. BLAST Aligned Reads and Theoretical Gains 
 

Sample	

Bowtie-
mapped	CpG	
Enrichment	

Bowtie-
mapped	
read	count	

BLAST-
mapped	
CpG	
Enrichment	

unmapped	
reads	

thr.	
BLAST	
map	
rate	

thr.	BLAST	
mapped	
reads	

thr.	CpG	
Enrichment	

thr.	CpG	
Increase		

B26	 2.55	 6079420	 3.66	 12015786	 0.10	 1201578	 2.74	 7.2%	
B45	 1.67	 4214508	 2.71	 6918270	 0.10	 691827	 1.82	 8.8%	
B19	 1.66	 1176207	 2.37	 8347628	 0.10	 834762	 1.96	 17.7%	
B29	 2.96	 1327240	 4.17	 918778	 0.10	 91877	 3.04	 2.7%	
B3	 3.22	 1329858	 4.93	 1630052	 0.10	 163005	 3.40	 5.8%	

 

Table 5: We show the CpG enrichment of Bowtie aligned reads vs. BLAST aligned reads. That the BLAST 
aligned population has a significantly higher CpG enrichment presents an intriguing avenue for further study. 

Alternative alignment methods would likely need to be developed to align similar reads at scale however, since 
BLAST is computationally intensive. We calculate the theoretical gains that could made to CpG enrichment 

assuming such an aligner (thr. CpG Increase). 
 
Discussion and Conclusions 
As noted in Scriver et al, the mutational likelihood of nucleotides can vary depending on their neighboring 
bases. We have demonstrated the importance of analyzing mutations in context when conducting a study 
focused on characterizing systematic mutations since these mutational biases can be worsened by chemical 
processes. The C->T effect verified in this study was virtually invisible until considered in context (CpG -> 
TpG.)  
 
We showed that the FFPE samples we analyzed had multiple statistically significant differences in C based 
mutation rates when compared to mutations in Fresh Frozen samples, the most dramatic of which was the 
CpG->TpG mutation. However, correcting for that effect with a variation of available methods was not sufficient 
to boost the post-alignment quality of the samples to be used in concordance with Fresh Frozen samples. This 
suggests that while FFPE CpG dinucleotides are more likely to degrade to TpG dinucleotides than equivalent 
molecules in Fresh Frozen reads, the occurrence of a C in a CpG context is simply too infrequent per read to 
significantly boost alignment rates when corrected for. Additionally, the infrequence of C bases in CpG 
contexts is likely exacerbated with the data used in this study since MethylCap-Seq enriches for these bases, 
but our results suggest that these sites systematically degrade in FFPE storage; a process that would interfere 
with the enrichment process. This could be a major cause of the lower CpG enrichments seen in our FFPE 
samples, suggesting that a computational method might be insufficient to correct for this particular effect since 
reads that could be salvaged by our methods would not likely be pulled down during library generation and 
thus would never be available to be processed computationally. 



 
However, there is still hope for computational correction of FFPE data in MethylCap-Seq experiments. The 
theoretical improvements that we showed that could be made by aligning the remaining population of 
unaligned reads from our analysis to the human genome with BLAST suggest that the CpG -> TpG mutation 
(and similar effects) is not the only cause of the lower CpG enrichments seen in our FFPE samples. Further 
analysis is needed to explore specifically what effect BLAST corrects for in these reads, and why reads 
salvaged by the correction exhibit higher CpG enrichments than average reads aligned by traditional methods. 
The benefits of the correction could be attained simply by aligning all reads from this population with BLAST. 
However, since the size of that set of reads is often on the order of millions of reads, doing so would be very 
computationally intensive. If the corrective effect produced by BLAST could be characterized, then an aligner 
more suited to processing millions of reads could be altered (or developed from scratch) to produce a similar 
benefit. Such analysis could be the topic of future studies aimed at computationally correcting for the degrading 
effects of FFPE stored samples used in MethylCap-Seq experiments. 
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