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Abstract 
Automatic instrument recognition can be accomplished by transforming an amplitude signal from a song 
into many features related to frequencies, pitch and power and feeding these features into a learning 
machine. We investigated the IRMAS dataset containing ~6,000 three second recordings in which more 
than one instrument may be playing, but only one is the “lead”. To classify clips by lead instruments, we 
implemented three styles of learning machines that have shown promising results on this task: 
K-nearest-neighbors, Support Vector Machines, and Neural Networks (deep and shallow). We found that 
shallow networks performed the best at ~57% accuracy over 11 classes, though the performance of all the 
machines was heavily dependent on the input feature set. More work guided by audio engineering 
techniques is needed to further improve accuracy. 

Introduction 
The exponentially growing body of digital music available online presents a unique set of challenges for 
those who maintain it. Categorizing music by genre, emotion, and more has implications as basic as 
optimizing storage and retrieval, to as complex as aiding algorithm-based music recommendation engines 
(Spotify, Pandora, iTunes, etc.) Identifying the primary instruments present in digital music can help 
identify the genre or emotional content of the song, but doing this programatically is an ongoing 
challenge. Herein, we investigate the methods used in a 2012 thesis paper attempting to implement 
instrument classification in a rich set of live audio recordings. We start by implementing the methods used 
in the thesis (where possible), then run several different feature extraction and selection methods to 
attempt to improve on the results. 

Background 
We used the IRMAS data set [1]. It contains samples of real music which vary in length, source, genre, 
etc. Each sample is classified with its most prominent instrument. The data set contains 6705 training 
samples and 2874 test samples with 11 most prominent instruments. The training data samples are 3 
seconds each and the test data varies in length. This is acceptable because all of the features either do not 
depend on the time domain or are aggregate functions such as average and variance. The only paper 
reference that uses this data is the original PhD. thesis of Ferdinand Fuhrmann [2]. Fuhrmann’s work get 
the best results using SVM, K-NN, and Neural Nets. His accuracies with each are SVM (~63%), K-NN 
(57.4%), and Neural Net (57.9%). Other works from literature suggest these as best methods for sound 
classification (with basic learning machines) [3,4,5]. Each of these authors agree that, because of the 
extreme complexity involved in distinguishing between live instruments in a piece, the most important 
step for achieving good results with any of these machines is feature extraction and selection. 
 
 
 



Methods 
As previously mentioned, our dataset is made up of wav files which contain an array of amplitudes over 
time sampled at 44,100kHz. This in its raw form is difficult to use to discern between instruments. Herein 
we focus mainly on implementing basic classifier architectures which generally work with feature vectors 
of a size considerably less than the size of the training sample. Hence the most important step of our work 
was in extracting features from the wav files that had good classification power. As in typical in the 
literature, we derived the majority of our features by first converting the data to a frequency space using a 
Fast Fourier Transform, then computing various features from the resulting curve. We derived several 
features based on Mel Frequency Cepstral Coefficients (MFCC) using 40 bins and a 0.1 second window 
[6], basic aspects of the frequency spectra (centroid, spread, energies, valleys, rolloff), and energy inside 
of bark bands [2]. Table 1 shows the comprehensive list of features that were used at least once during 
our experiments. We used python for all of the feature extraction and for constructing all of the learning 
machines. 

Description Type Num Features 

MFCC Average 13 

MFCC First Order Difference 13 

MFCC Second Order Difference 13 

MFCC Flattened Correlation Matrix 91 

PyAudio[7*] Average MFCC + Spectral 68 

Bark Bands Average 26 

Table 1: Inclusive list of features utilized during experiments. Not all were used at once, and not all were 
used to obtain our best results. 
 
Having established this list of possible features to work with, we then employed several different 
techniques for identifying the most important features for classification in order to reduce the number of 
dimensions. 
 
Univariate Feature Selection: In an attempt to raise the accuracy, we turned to feature selection and 
elimination [8]. Sklearn's SelectKBest function uses a chi squared method to measure the correlation 
between features and labels [9]. It reports the k features with the highest correlation. The most impactful 
features generally were the Mel Frequency Cepstrum Coefficients. Removing the noise generated from 
unimportant features can improve accuracy. Varying the number of features kept as a hyper-parameter, 
the neural net was the only learning algorithm found to improve with after feature selection. K nearest 
neighbors and SVMs both dropped in accuracy if any of the features were eliminated. 
 
Recursive Feature Elimination: This was done using the RFE module in sklearn. RFE works by finding 
the worst feature for predicting the training data, removing it, then repeating the process until the 
remaining number of features matches the target number. 
 
 
 



Feature Importance: The final feature selection method we employed. Carrying this out is simple using 
SciKit-Learn’s ExtraTreesClassifier, which implements an estimator that fits a given number of 
randomized decision trees on many sub-samples of the dataset. It uses the average of the tree weights to 
report the importance of each feature in distinguishing between each of the classes. 

SVM 
The SVM classifier was implemented using both libsvm and sklearn's SVM packages. An RBF kernel 
was used, which takes the form An RBF kernel was chosen because(x,  ) exp(− x  ‖ /(2σ )).K x′ =  ‖ − x′ 2 2  
it can handle the nonlinear borders between the instrument classes in the feature space. Other nonlinear 
kernels were considered, but the RBF is generally considered a standard and reliable starting point [10]. 
 
Libsvm and sklearn take the same approach to classifying multiple classes with SVMs: creating many two 
class SVMs. They give the user the option of creating many one vs. all (OVA) classifiers, matching each 
class against the rest of the data, or one vs. one (OVO) classifiers, matching every instrument against 
every other instrument in a pairwise fashion. The SVM with the highest confidence or aggregate 
confidence (in the case of OVO) gives the final classification. OVA has to create num_classes SVMs and 
OVO has to create (num_classes) * (num_classes - 1) / 2 SVMs. Experiments revealed the two methods 
gave exactly the same or extremely similar results. 
 
Features used to get the best results were the same base 68 as described above along with barkbands. 
Barkbands convert the sounds signal from the time domain to the frequency domain with a fast Fourier 
transform, and then sums over the power shown in specific frequency ranges, called the bark scale. This is 
all done as it was in Fuhrmann's [2]. 
 
The two hyper-parameters for an RBF kernel are C and gamma. C is the confidence that the training 
samples are distributed just as the test samples. A high C will give lower training error but the boundary 
drawn will be prone to overfitting. Gamma affects the range of influence each training point influences. C 
and gamma were found using a naive box search, as is standard [10] and 10 fold cross validation. The best 
results were found with C = 5, gamma = .1. A full search is shown in Figure 1.  
 
These features and hyper-parameters gave a test accuracy of 37%. This is low compared to the literature. 

Figure 1. Accuracy over many hyper-parameters. X 
- Gamma, Y - C, Z - Accuracy % 
 
In an attempt to raise the accuracy, we turned to 
Sklearn's SelectKBest function uses a chi squared 
method to find the features that most correlate with 
the labels. The most impactful features generally 
were the Mel Frequency Cepstrum Coefficients. 
Removing the noise generated from unimportant 
features could have improved accuracy, but in 
practice it lowered it slightly. 
 
The next attempt with feature selection borrowed 
ideas from multiclass SVMs. Just as a OVA SVM 



makes an SVM for each class and takes the highest confidence, we took the most important features for 
each class and created a OVA SVM using only those. One SVM for each class trained on that class' 
specific features. A class' important features were found by passing SelectingKBest between pairs of 
labels over every pair of labels and aggregating the results. This creates num_claseses multiclass SVMs 
and num_classes * num_classes two class SVMs. Different feature subsets from a test point's feature set 
were point into each multiclass SVM, and whichever gave the highest confidence was used. Once again, 
This practice did not bear better results, generally lowering accuracy a couple percentage points. The most 
important features varied between labels, but they could have been similar enough to not create the effect 
we had hoped. Also, in general, removing features from the SVMs always lowered accuracy, so it could 
be that removing the least important features overshadowed any benefit this method might have had. 
 
K-Nearest Neighbors 
K-Nearest neighbors was implemented manually at first, then with sklearn; both in python. The manual 
implementation used Euclidean distance, while the sklearn implementation used Euclidean, Manhattan, 
Minkowski, and Chebyshev distances. The methods for calculating distance resulted in the same accuracy 
(less than 1% difference for most K values), with the exception of Chebyshev, which resulted in a small 
decrease in accuracy. The Minkowski distance function was used in the end, as that was the default option 
in sklearn. 
 
Recursive feature elimination was tried in the hopes that one or more of the features was unimportant, or 
was actively throwing off the knn algorithm. If one of the features was just random noise, then that could 
result in sound files of the same instrument being far away from each other in the feature-space, and thus 
decreasing the accuracy of the KNN algorithm. This turned out not to be the case, however, as removing 
even one feature decreased the accuracy by roughly 5%.  
 
Below is a graph showing the accuracy at various K-values, using the best of the features and models tried 
(MFCC features, the Minkowski distance function, and not using any feature elimination). 

 
Figure 2. Accuracy of classifications as a function of K in the K-Nearest Neighbors machine. 
  
The best accuracy obtained with k-nearest neighbors was 49.6%, with K values of 105, 110, and 113. 
Most sound files had more than one instrument playing, so when there were 2 dominant ones, it was 
considered correct if the model predicted either one. That, and the fact that the most common instrument 



in the training data will likely also be the most common instrument in the testing data, is likely why the 
accuracy is around 37%, rather than 9%, when K is equal to the size of the training data.  

Neural Networks 
 
MLP Net: As in the thesis paper, we also implemented a shallow multi-layer perceptron network with 
one hidden layer (implemented with TensorFlow.)  We used a softmax over the output and cross entropy 
loss with back-propagation to train the network. The learning rate and size of the network were treated as 
hyperparameters and selected using cross validation for each input feature set. For each set of features, the 
net was run with its optimal hyperparameters for 2500 epochs. The results are shown in Table 2 below. 
Our best combination of features and hyperparameters achieved an accuracy within 0.3% of the literature. 
 

Feature Set # of Features Accuracy Learning Rate Size of Hidden 
Layer 

MFCC + 1st order 26 32.13% 0.015 20 

MFCC + 2nd order 39 30.82% 0.015 35 

MFCC - Covariance 91 45.82% 0.003 60 

PyAudio Features 68 48.63% 0.006 100 

PyAudio top 35% 23 50.25% 0.003 50 

PyAudio+Covar top 50% 80 57.75% 0.006 100 

Table 2: Classification accuracy achieved for 6 different feature sets input to the shallow MLP net. With 
our best feature set we come within 0.3% of thesis results for a shallow MLP Net. 

Deep Net: We also attempted to extend our work beyond basic learning machines. We implemented a 
Deep Neural Network with the following structure from LeCun, et al. [11]: (32x32x1) -> CONV 
(32x32x32) -> POOL (16x16x32) -> CONV (16x16x64) -> POOL (8x8x64) -> FC (4096x1024) -> FC 
(1024x13) -> OUT, using a softmax over the output and training with gradient descent. As input we 
computed a spectrogram over a given number of windows of the sound file, making the number of 
windows a hyperparameter. Unfortunately, due to limitations to our computational power, we could only 
create spectrograms with between 1 and 5 windows. Though the accuracy of the model increased steadily 
with the number of windows, the maximum accuracy achieved was 38.1%. Given the correlation between 
accuracy and number of windows in the input spectrogram, we likely could have achieved much greater 
accuracy with this approach if we had access to greater computational resources. 

Discussion 
We approached a diverse and rich instrument classification dataset using a myriad of feature extraction 
and selection methods then processed them with common classifying machines. Note that the dataset we 
use is more challenging than most in this space. Whereas many papers utilize two-class or synthetic music 
sets, our set contains only live samples from 11 lead instruments. Further, each clip may vary in its 



numbers of instruments, volume, recording quality, or genre. We also faced challenges in computational 
power which restricted us from using important features from literature (Linear Prediction Coefficients) 
or from extending to more complex classifiers (Deep Nets.) Despite this, we still achieved interesting 
results, and even virtually matched the accuracy from the thesis baseline for our shallow MLP network. 
Further, where our results diverge from Fuhrmann's provide interesting insights. It’s interesting that our 
features gave similar results to the literature for the neural net but significantly worse for the SVM. This 
means that features are of varying utility to different learning algorithms. Our features were of equal 
utility as the Fuhrmann's when given to a neural net, but much worse when given to an SVM. This means 
feature importance is affected by learning algorithm and not just the correlation to the labels, and that 
Sklearn’s SelectKBest function does not completely capture the problem. Future work can identify which 
features are most important for each learning machine, and possibly why. 
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