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Abstract

Automatic instrument recognition can be accomplished by transforming an amplitude signal from a song 

into many features related to frequencies, pitch and power and feeding these features into a learning 

machine. We investigated the IRMAS dataset containing ~6,000 three second recordings in which more 

than one instrument may be playing, but only one is the “lead”. To classify clips by lead instruments, we 

implemented three styles of learning machines that have shown promising results on this task: 

K-nearest-neighbors, Support Vector Machines, and Neural Networks (deep and shallow). We found that 

shallow networks performed the best at ~57% accuracy over 11 classes, though the performance of all 

the machines was heavily dependent on the input feature set. More work guided by audio engineering 

techniques is needed to further improve accuracy.

 



Intro

Identify the main instrument present in an audio file. Our data set 

(IRMAS) focuses on melodic instruments [1].

Implications in the Field of Music Information Retrieval.

- Indexing songs by instrument (Spotify, Pandora, or iTunes)

- Genre classification (lead instrument can correlate with genre)



Background

● Built off of 2012 thesis paper and dataset [2]
● 6705 training samples / 2874 test samples

○ 11 instruments
○ 3 seconds each

● Thesis describes using SVM, K-NN, and Neural Nets
○ Best results with SVM (~63%)
○ K-NN (57.4%), Neural Net (57.9%)

● Other work from literature suggests these as best methods for sound 
classification (with basic learning machines)

● Most important step is Feature Extraction/Selection

We want to match/beat these



Feature Extraction

● Our data (wav files) starts as an array of amplitudes over time
● This in raw form is difficult to use to discern between instruments
● Feature extraction is extremely important
● Most features derived by converting  to frequency space

○ Mel Frequency Cepstral Coefficients (MFCC)
○ Spectral features (centroid, spread, energies, valleys, rolloff)
○ Zero Crossing Rate



Mel Frequency Cepstral Coefficients (MFCC)

1. Frame the signal into short frames.

● Window Lengths of 10-100 ms are common

● Will calculate coefficients for each window

[3]



MFCC

2. Convert each window from time domain 

to frequency domain.

Accomplished by taking a Fourier 

Transform.

[3]



MFCC

3. Determine a set of windows (or filter banks 

- the triangular regions) and sum the energies 

in each window.

Typical number of filters is 26

[3]



MFCC

4. Take the logarithm of all filterbank energies.

5.  Take the Discrete Cosine Transform (DCT) of the log filterbank energies.

6. Keep DCT coefficients 2-13 (make sure to discard 0 as this contains volume and zero-frequency 

information)

[3]



SVM Implementation

The SVM was implemented using libsvm and sklearn.

An RBF kernel was used.

The confidence and learning rate hyperparameters were found using a naive grid search and checked 

with cross validation. 

To deal with multiple classes, many two class (One vs One or One vs All) SVMs are created and the most 

likely result is chosen.

Accuracy over 
many 
hyperparameters.

X - Gamma
Y - C
Z - Accuracy 



SVM - Feature Selection and Results
Feature selection/elimination using sklearn's SelectKBest function.

Varied the number of features, never getting an increase in accuracy

Aggregated best features over pairwise combinations of labels to estimate the best features for each 

label

Created an SVM using each label's best feature set and used either max or average over the results to 

pick a label

Also did not help, with accuracy in the low 30%s.

Best result so far uses all of the mentioned features + barkbands, achieving 37% accuracy.



KNN

K-nearest-neighbors was implemented with 

sklearn in python as well as manually.

All methods of calculating distance resulted in 

basically the same accuracy.  (Euclidean, 

Manhattan, Minkowski)

The final accuracy was around 49%, with a k 

value of 105. 



Recursive Feature Elimination

This removes the worst feature for predicting the data, then removes the next worst until the number of 

features matches the target number. 

RFE was tried with KNN. 

The thought was that because KNN can’t attach weights to features, so some features might have been 

damaging the results. 

Apparently all features were useful, however, as just reducing them from 13 to 12 resulted in a ~3% loss 

in accuracy. 



Deep Neural Net - Implementation
● Implemented with TensorFlow

○ Structure [4]: (32x32x1) -> CONV (32x32x32) -> POOL (16x16x32) -> CONV 

(16x16x64) -> POOL (8x8x64) -> FC (4096x1024) -> FC (1024x13) -> OUT

○ Softmax, Gradient Descent 

[5]



Deep Neural Net - Implementation

● Input a spectrogram
○ Matrix where each row is FFT of a window 

of sound
● Hyperparameter: Window Size

○ Smaller windows → larger spectrograms
○ Laptop could only handle training for 

spectrograms of ~5 rows 
■ (since sampling rate is so high at 

44kHz = #columns)



Deep Neural Net - Results

● Maximum accuracy achieved was ~38%. 
● Likely could have achieved higher with smaller windows

○ need more memory!
● MFCC space spectrogram?



Shallow Neural Net - Implementation
● Implemented with TensorFlow
● Structure:

○ One hidden layer of size N
○ Output layer of size 11 (softmax)

● Cross Entropy Loss 
○ appropriate for softmax
○ faster training than MSE

● Hyperparameters (learning rate, N) 
selected via cross validation for each 
attempted feature set #Features

N

11



Shallow Neural Net - Results

● Average MFCC (plus 1st order differences)
○ Accuracy: 32.13%

● Average MFCC (plus 2nd order differences)
○ Accuracy: 30.82%

● MFCC - Flattened Covariance matrix
○ Accuracy: 45.82%

● “Full Set” - Average MFCC plus Spectral features
○ Accuracy: 48.63%



Shallow Neural Net - Feature Selection

● Calculated Feature Importance using SciKit-Learn’s 
ExtraTreesClassifier
○ Builds a forest of trees from an input training set
○ Calculates the importance of each feature in making classifications



Shallow Neural Net - Feature Selection

● Top 35% most important features from “Full Set”
○ Accuracy: 50.25%

● Top 50% most important features from “Full Set” + MFCC covariance
○ Best Accuracy: 57.75%
○ Closest match to thesis results
○ Within <1% of thesis results



Discussion
● Our dataset is less forgiving than most.

○ Variable instruments, loudness, recording quality, what makes a “lead” instrument

● Not all methods reached the accuracy achieved from the thesis, but comparing our results 

to Fuhrmann's still gives insights.

○ He got the best accuracy from an SVM, but our best accuracy came from a NN, and 

SVM gave our worst.

● There's more to be researched about what features most strongly affect prediction for 

different learning algorithms.



Limitations
● Computational Power

○ Feature: Linear Prediction Coefficients

○ Important in thesis results

○ Too long for us to feasibly compute for 6K training samples

● Memory

○ Deep Nets work with raw/ semi-processed input

○ Insufficient memory to support this

○ Truncated input likely caused poor results for Deep Net
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